If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+3.5x=0
a = 100; b = 3.5; c = 0;
Δ = b2-4ac
Δ = 3.52-4·100·0
Δ = 12.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.5)-\sqrt{12.25}}{2*100}=\frac{-3.5-\sqrt{12.25}}{200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.5)+\sqrt{12.25}}{2*100}=\frac{-3.5+\sqrt{12.25}}{200} $
| 9m-7m=14 | | 20+3.50x=10+4.75 | | 2x-3(8)=72 | | 2(x+9)/3=16 | | 100x^2+3.5=0 | | 3(x-4=14 | | 1/2^x-3=16^3x-1 | | 20+3.50x=20+3.50x | | 13a-11a=16 | | k/3=51 | | 6y=-3y+54 | | 10x-15+10=55 | | p−30=41 | | 9t-t=8 | | 5+49x=21x+3 | | 3/51=k | | d+47=97 | | 4^x-5=64 | | 2.5d+7.75=4 | | 6+7x=1+2x | | 27^(-x+5)=81 | | 3^(.4x)-7=10 | | 0.5(4y+16)=2y-8 | | Y=-6x-17 | | 4x=5x+24 | | 3x+14=-8-5x | | -10b=200 | | -3(6x+4)+30x=12(x-1) | | 38=4y-2 | | 8x-2=4x-5 | | b/9+9=9 | | 8x−9=31 |